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Abstract This paper presents a novel algorithm based on

generalized opposition-based learning (GOBL) to improve

the performance of differential evolution (DE) to solve high-

dimensional optimization problems efficiently. The pro-

posed approach, namely GODE, employs similar schemes of

opposition-based DE (ODE) for opposition-based popula-

tion initialization and generation jumping with GOBL.

Experiments are conducted to verify the performance of

GODE on 19 high-dimensional problems with D = 50, 100,

200, 500, 1,000. The results confirm that GODE outperforms

classical DE, real-coded CHC (crossgenerational elitist

selection, heterogeneous recombination, and cataclysmic

mutation) and G-CMA-ES (restart covariant matrix evolu-

tionary strategy) on the majority of test problems.

Keywords Differential evolution � Opposition-based DE �
Evolutionary computation � Global optimization �
High-dimensional optimization � Large-scale optimization

1 Introduction

Many real-world problems may be formulated as optimi-

zation problems with variables in continuous domains

(continuous optimization problems). In the past decades,

different kinds of nature-inspired optimization algorithms

have been designed and applied to solve optimization

problems, e.g., simulated annealing (SA; Kirkpatrick et al.

1983), evolutionary algorithms (EAs; Bäck 1996), differ-

ential evolution (DE; Storn and Price 1997), particle swarm

optimization (PSO; Kennedy and Eberhart 1995), ant

colony optimization (ACO; Dorigo et al. 1996), estimation

of distribution algorithms (EDA; Larranaga and Lozano

2001), etc.

Although these algorithms have shown good optimiza-

tion performance in solving lower dimensional problems

(D \ 100), many of them suffer from the curse of dimen-

sionality, which implies that their performance deteriorates

quickly as the dimension of the problem increases. The

main reason is that in general the complexity of the prob-

lem increases exponentially with its dimension. The

majority of evolutionary algorithms lose the power of

searching the optima solution when the dimension increa-

ses. So, more efficient search strategies are required to

explore all the promising regions in a given time budget

(Tang et al. 2007).

Opposition-based learning (OBL), introduced by

Tizhoosh (2005), is a machine intelligence strategy, which

considers current estimate and its opposite estimate at the

same time to achieve a better approximation for a current

candidate solution. It has been proved (Rahnamayan et al.

2008a) that an opposite candidate solution has a higher

chance to be closer to the global optimum solution than a

random candidate solution. The idea of OBL has been used

to enhance population-based algorithms (Rahnamayan

et al. 2006a, b, 2008b; Wang et al. 2007). Opposition-

based DE (ODE) is one of these successful applications,

which shows excellent search abilities in solving both low-

dimensional and high-dimensional problems (Rahnamayan
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et al. 2008b; Rahnamayan and Wang 2008). In this paper,

we present an enhanced ODE algorithm to solve high-

dimensional continuous optimization problems more effi-

ciently. The proposed approach is called GODE, which

employs a generalized opposition-based learning (GOBL)

concept (Wang et al. 2009a, b).

The rest of the paper is organized as follows. In Sect. 2,

the classical DE algorithm is briefly introduced. Section 3

presents some reviews of related work on large-scale glo-

bal optimization. The GOBL and its analysis are given in

Sect. 4. Section 5 gives an implementation of the proposed

algorithm, GODE. In Sect. 6, the test suite, parameter

settings, results and discussions are presented. Finally, the

work is concluded in Sect. 7.

2 Differential evolution

Differential evolution (DE), proposed by Storn and Price

(1997), is an effective, robust and simple global optimiza-

tion algorithm. According to frequently reported experi-

mental studies, DE has shown better performance than many

other evolutionary algorithm (EAs) in terms of convergence

speed and robustness over several benchmark functions and

real-world problems (Vesterstrom and Thomsen 2004).

There are several variants of DE (Storn and Price 1997).

According to the suggestions of Herrera et al. (2010a), the

rand/1/exp strategy shows a better performance to solve

high-dimensional problems. Our proposed algorithm is also

based on this DE scheme. Let us assume that XiðtÞði ¼
1; 2; . . .;NpÞ is the ith individual in population P(t), where

Np is the population size, t is the generation index, and

P(t) is the population in the tth generation. The main idea

of DE is to generate trial vectors. Mutation and crossover

are used to produce new trial vectors, and selection

determines which of the vectors will be successfully

selected into the next generation.

Mutation: For each vector XiðtÞ in Generation t, a

mutant vector V is generated by

ViðtÞ ¼ Xi1ðtÞ þ F Xi2ðtÞ � Xi3ðtÞð Þ; ð1Þ
i 6¼ i1 6¼ i2 6¼ i3;

where i ¼ 1; 2; . . .;Np and i1; i2, and i3 are mutually dif-

ferent random integer indices within ½1;Np�. The popula-

tion size Np should be satisfied Np� 4 because i, i1, i2, and

i3 are different. F 2 ½0; 2� is a real number that controls the

amplification of the difference vector ðXi2ðtÞ � Xi3ðtÞÞ.
Crossover: Like genetic algorithms, DE also employs a

crossover operator to build trial vectors ðUiðtÞ ¼
fUi;1ðtÞ;Ui;2ðtÞ; . . .;Ui;DðtÞgÞ by recombining two dif-

ferent vectors. In this paper, we use the rand/1/exp

strategy to generate the trial vectors.

Selection: A greedy selection mechanism is used as

follows:

XiðtÞ ¼
UiðtÞ; if f ðUiðtÞÞ� f ðXiðtÞÞ
XiðtÞ; otherwise

�
ð2Þ

Without loss of generality, this paper only considers

minimization problem. If, and only if, the trial vector

UiðtÞ is better than XiðtÞ, then XiðtÞ is set to UiðtÞ;
otherwise, the XiðtÞ remains unchanged.

3 Related works

In the past several years, the research on solving high-

dimensional optimization problems has attracted much

attention. Some excellent works have been proposed. In

this section, a brief overview of these approaches is

presented.

Yang et al. (2008) proposed a multilevel cooperative co-

evolution algorithm based on self-adaptive neighborhood

search DE (SaNSDE) to solve large-scale problems. Hsieh

et al. (2008) presented an efficient population utilization

strategy for PSO (EPUS-PSO) to manage the population

size. Brest et al. (2008) introduced a population size

reduction mechanism into self-adaptive DE, where the

population size decreases during the evolutionary process.

Tseng and Chen (2008) presented multiple trajectory search

(MTS) by using multiple agents to search the solution space

concurrently. Zhao et al. (2008) used dynamic multi-swarm

PSO with local search (DMS-PSO) for large-scale prob-

lems. Rahnamayan and Wang (2008) presented an experi-

mental study of opposition-based DE (ODE; Rahnamayan

et al. 2008b) on large-scale problems. The reported results

show that ODE significantly improves the performance of

standard DE. Wang and Li (2008) proposed a univariate

EDA (LSEDA-gl) by sampling under mixed Gaussian and

lévy probability distribution. Rahnamayan and Wang

(2009) introduced an effective population initialization

mechanism when dealing with large-scale search spaces.

Molina et al. (2009) presented a memetic algorithm by

employing MTS and local search chains to deal with large-

scale problems. Garcı́a-Martı́nez and Lozano (2009) pro-

posed a continuous variable neighborhood search algorithm

based on evolutionary metaheuristic components. Muelas

et al. (2009) used a local search mechanism to improve the

solutions obtained by DE. Duarte and Marti (2009) pre-

sented an adaptive memory procedure based on scatter

search and Tabu search to guide search in solving large-

scale problems. Wang et al. (2009b) used an enhanced ODE

based on generalized opposition-based learning (GODE) to

solve scalable benchmark functions. Gardeus et al. (2009)

proposed an enhanced unidimensional search (EUS) by

employing an intensification mechanism.
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4 Generalized opposition-based learning

4.1 Opposition-based learning

Opposition-based Learning (OBL; Tizhoosh 2005) is a new

concept in computational intelligence, and has been proven

to be an effective concept to enhance various optimization

approaches (Rahnamayan et al. 2006a, b, 2008b; Wang

et al. 2007). When evaluating a solution x to a given

problem, simultaneously computing its opposite solution

will provide another chance for finding a candidate solution

closer to the global optimum (Rahnamayan et al. 2006a).

Opposite number (Rahnamayan et al. 2006a): Let x 2
½a; b� be a real number. The opposite of x is defined by:

x� ¼ aþ b� x: ð3Þ

Similarly, the definition is generalized to higher dimen-

sions as follows.

Opposite point (Rahnamayan et al. 2006a): Let X ¼
ðx1; x2; . . .; xDÞ be a point in a D-dimensional space, where

x1; x2; . . .; xD 2 R and xj 2 ½aj; bj�; j 2 1; 2; . . .;D. The

opposite point X� ¼ ðx�1; x�2; . . .; x�DÞ is defined by:

x�j ¼ aj þ bj � xj: ð4Þ

By applying the definition of opposite point, the

opposition-based optimization can be defined as follows.

Opposition-based optimization (Rahnamayan et al.

2006a): Let X ¼ ðx1; x2; . . .; xDÞ be a point in a D-dimen-

sional space (i.e., a candidate solution). Assume f(X) is a

fitness function, which is used to evaluate the candidate’s

fitness. According to the definition of the opposite point,

X� ¼ ðx�1; x�2; . . .; x�DÞ is the opposite of X ¼ ðx1; x2; . . .; xDÞ.
If f ðX�Þ is better than f(X), then update X with X�; other-

wise keep the current point X. Hence, the current point and

its opposite point are evaluated simultaneously to continue

with the fitter one.

4.2 The concept of GOBL

Based on the concept of OBL, we proposed a generalized

OBL as follows (Wang et al. 2009a). Let x be a solution in

the current search space S, x 2 ½a; b�. The new solution x�

in the opposite space S� is defined by (Wang et al. 2009a):

x� ¼ D� x; ð5Þ

where D is a computable value and x� 2 ½D� b;D� a�. It

is obvious that the differences between the current search

space S and the opposite search space S� are the center

positions of search space. Because the size of search range

(indicates the size of interval boundaries) of S and S� are

b - a, and the center of current search space moves from
aþb

2
to 2D�a�b

2
after using GOBL.

Similarly, the definition of GOBL is generalized to a

D-dimensional search space as follows.

x�j ¼ D� xj; ð6Þ

where j ¼ 1; 2; . . .;D.

By applying the GOBL, we not only evaluate the current

candidate x, but also calculate its transformed candidate x�.
This will provide more chance of finding candidate solu-

tions closer to the global optimum.

However, the GOBL could not be suitable for all kinds of

optimization problems. For instance, the transformed can-

didate may jump away from the global optimum when

solving multimodal problems. To avoid this case, a new

elite selection mechanism based on population is used after

the transformation, in which Np (population size) fittest

candidates will survive in the next generation. The elite

selection mechanism is described in Fig. 1. Assume that the

current population P(t) has three candidates (Np ¼ 3), x1; x2

and x3, where t is the index of generations. According to the

concept of GOBL, we get three transformed candidates x�1,

x�2 and x�3 in population GOP(t). Then, we select three fittest

candidates from P(t) and GOP(t) as a new population P0ðtÞ.
It can be seen from Fig. 1, x1; x

�
2 and x�3 are three new

members in P0ðtÞ. In this case, the transformation conducted

on x1 did not provide another chance of finding a better

candidate solution. With the help of the elite selection

mechanism, x�1 is eliminated in the next generation.

4.3 Four different schemes of GOBL

Let D ¼ kðaþ bÞ, where k is a real number. The new

GOBL model is defined by:

x� ¼ kðaþ bÞ � x: ð7Þ

Let us consider four typical GOBL schemes with

different values of k as follows.

1. k ¼ 0 (symmetrical solutions in GOBL, GOBL-SS).

The GOBL-SS model is defined by

x� ¼ �x; ð8Þ

where x 2 ½a; b� and x� 2 ½�b;�a�. The current solution

x and opposite solution x� are on the symmetry of origin (0).

Fig. 1 The elite selection mechanism based on population

Enhanced opposition-based differential evolution 2129
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2. k ¼ 1
2

(symmetrical interval in GOBL, GOBL-SI). The

GOBL-SI model is defined by

x� ¼ aþ b

2
� x; ð9Þ

where x 2 ½a; b� and x� 2 �b�a
2
; b�a

2

� �
. The interval of

the opposite space is on the symmetry of origin.

3. k ¼ 1 (opposition-based learning, OBL).

When k ¼ 1, the GOBL model is equal to equation (3),

where x 2 ½a; b� and x� 2 ½a; b�.
4. k ¼ randð0; 1Þ (Random GOBL, GOBL-R)

The GOBL-SI model is defined by

x� ¼ kðaþ bÞ � x; ð10Þ

where k is a random number within ½0; 1�; x 2 ½a; b� and

x� 2 ½kðaþ bÞ � b; kðaþ bÞ � a�. The center of the

opposite space is at a random position between �aþb
2

and aþb
2

.

For a given problem, it is possible that the opposite

candidate may jump out of the box-constraint ½Xmin;Xmax�.
When this happens, the GOBL will be invalid, because the

opposite candidate is infeasible. To avoid this case, the

opposite candidate is assigned to a random value as follows.

x� ¼ randða; bÞ; If x� 62 ½Xmin;Xmax� ð11Þ

where rand(a, b) is a random number within [a, b], and

[a, b] is the interval boundaries of current search space.

To illustrate the mechanism of GOBL clearly, Figs. 2

and 3 present the visualization of the four different GOBL

models. By the suggestion of our previous study (Wang

et al. 2009a), the GOBL-R surpasses the other three GOBL

models. So the proposed approach GODE is also based on

the GOBL with random k in this paper.

4.4 GOBL-based optimization

By staying within variables’ interval static boundaries, we

would jump outside of the already shrunken search space

and the knowledge of the current converged search space

would be lost. Hence, we calculate opposite particles by

using dynamically updated interval boundaries ½ajðtÞ; bjðtÞ�
as follows (Rahnamayan et al. 2008b).

X�i;j ¼ k½ajðtÞ þ bjðtÞ� � Xi;j ð12Þ

ajðtÞ ¼ minðXi;jðtÞÞ; bjðtÞ ¼ maxðXi;jðtÞÞ ð13Þ

X�i;j ¼ randðajðtÞ; bjðtÞÞ; If X�i;j 62 ½Xmin;Xmax� ð14Þ

i ¼ 1; 2; . . .;Np; j ¼ 1; 2; . . .;D; k ¼ randð0; 1Þ;

where Xi;j is the jth vector of the ith candidate in the pop-

ulation, X�i;j is the opposite candidate of Xi;j, ajðtÞ and bjðtÞ
are the minimum and maximum values of the jth dimension

in the current search space, respectively, randðajðtÞ; bjðtÞÞ is

a random number within ½ajðtÞ; bjðtÞ�, ½Xmin;Xmax� is the box-

constraint, Np is the population size, rand(0,1) is a random

number within [0,1], k is generated anew in each generation

(i.e., the same value of k is used for the whole population),

and t ¼ 1; 2; . . .; indicates the generations.

5 Generalized opposition-based differential evolution

In our previous work (Wang et al. 2009a), GOBL was

applied to PSO and the experimental results showed that

the GOBL with random k works better than the other three

GOBL models in many benchmark problems. So, the

proposed approach GODE is also based on the random

GOBL model in this paper.

Like ODE (Rahnamayan et al. 2008b), the GODE uses

similar procedures for opposition-based population initiali-

zation and dynamic opposition with GOBL. The parent DE is

chosen as a parent algorithm and the proposed GOBL model

is embedded in DE to improve its performance. However,

the embedded strategy of GODE is different from ODE

[See Table 3 in Rahnamayan et al. (2008b)]. In the ODE, the

opposition is regarded as a jump or mutation strategy. GODE

considers the opposition as another search mechanism

besides DE, so GODE alternately executes GOBL and DE. In

the ODE, the opposition occurs with a probability, and the

parent DE executes every generation. But in the GODE, if

the probability of opposition po is satisfied, then execute the

GOBL; otherwise execute the classical DE.

The framework of GODE is shown in Algorithm 1,

where P is the current population, GOP is the oppositeFig. 2 (1) The GOBL-SS model, (2) the GOBL-SI model

Fig. 3 (3) The OBL model, (4) the GOBL-R model
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population after using GOBL, Pi is the ith individual in P,

GOPi is the ith individual in GOP, k is a random number

within [0, 1], po is the probability of GOBL, Np is the

population size, D is the dimension size, ajðtÞ; bjðtÞ is the

interval boundaries of current population, randðajðtÞ; bjðtÞÞ
is a random number within ½ajðtÞ; bjðtÞ�;CR 2 ð0; 1Þ is the

predefined crossover probability, randjðÞ is a random

number within [0,1], FEs is the number of fitness evalua-

tions, and MAX FEs is the maximum number of

evaluations.

6 Experimental studies

6.1 Experimental setup

There are 19 high-dimensional continuous optimization

functions used for the following experiments. Functions

F1–F6 were chosen from the first six functions provided by

CEC 2008 Special Session and Competition on Large Scale

Global Optimization (Tang et al. 2007). Functions F7–F11

were proposed for ISDA 2009 Workshop on Evolutionary

Algorithms and other Metaheuristics for Continuous

Optimization Problems—A Scalability Test (Herrera and

Lozano 2009). The rest of the eight functions, F12–F19, are

hybrid composition functions built by combining two

functions belonging to the set functions F1–F11. The spe-

cific descriptions of F1–F19 can be found in Herrera et al.

(2010b). In this paper, we focus on investigating the opti-

mization performance of GODE on problems with and

D = 50, 100, 200, 500, 1,000.

Experiments were conducted to compare four algorithms

including DE (Storn and Price 1997), real-coded CHC

(Eshelman and Schaffer 1993), G-CMA-ES (Auger and

Hansen 2005) and the proposed GODE algorithm on the test

suite. The parameter settings of DE, CHC and G-CMA-ES

are described in (Herrera et al. 2010a). For GODE, the

parameters Np, F, CR, and po are fixed to 60, 0.5, 0.9 and

0.05, respectively. By the suggestions of Herrera et al.

(2010a), the rand/1/exp scheme is employed in GODE.

In the experiments, and each algorithm is run 25 times

for each test function. The maximum number of fitness

evaluations MAX FEs is 5,000*D. Each run stops when

the maximum number of evaluations is achieved.

Throughout the experiments, the Best, Median, Worst and

Mean error values over 25 runs are recorded (for a solution

x, the error measure is defined as FðxÞ � FðopÞ, where op

is the global optimum of the function). All the results

below 1E–14 have been approximated to 0.0.

6.2 Results

Table 1 shows the results of GODE on functions F1–F19

with dimension D = 50, 100, 200, 500, 1,000. As seen,

GODE obtains promising performance on the majority of

test functions on each dimension. But GODE fails to solve

F3 and its hybrid composition functions F13 and F17. It

also has some difficulties when solving F4 for D = 500,

1,000, while it achieves good results for smaller dimen-

sionality. For functions F8, GODE could hardly find rea-

sonable solutions on each dimension. When the dimension

increases to 1,000, GODE fails to solve F7 and F15. In

our test, the fitness values of these two functions are larger

than the maximum value ð10308Þ that double precision float
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number can represent. This problem can be solved by using

higher precision data types, such as ‘‘long double’’ in

C/C??. Although we used ‘‘long double’’ to represent the

fitness value, GODE was implemented in Microsoft Visual

C?? 6.0, which uses the same size of bytes (8 bytes) to

represent ‘‘double’’ and ‘‘long double’’. So, we did not list

the results of these two functions for D ¼ 1000.

6.3 Comparison of GODE with DE, CHC

and G-CMA-ES

This section investigates the performance comparison of

GODE with DE, CHC and G-CMA-ES for D = 50, 100,

200, 500, 1,000 (the results of G-CMA-ES for D = 1,000 are

not included due to the large computation time for runs for

some functions). Tables 2, 3, 4, 5 and 6 present the average

error values of the above four algorithms on D = 50, 100,

200, 500, 1,000, respectively. The best results among the

four (three for D = 1,000) algorithms are shown in bold.

From the results, it can be seen that both DE and GODE

achieve promising results in all test cases except for F8,

while CHC and G-CMA-ES fall into local optima on the

majority of test functions. Compared to DE, GODE achieves

better results on nine functions (F4, F6, F8, F9, F11, F12,

F14, F16 and F18) in terms of their average error values,

while DE performs better on one function F13. For functions

Table 1 Experimental results of GODE for D = 50, 100, 200, 500,

1,000

D = 50 D = 100 D = 200 D = 500 D = 1,000

Best 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Median F1 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Worst 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Mean 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Best 2.08E-02 1.83E?00 1.05E?01 4.12E?01 8.62E?01

Median F2 3.58E-02 2.96E?00 1.46E?01 5.96E?01 8.91E?01

Worst 1.30E?00 8.25E?00 2.44E?01 6.87E?01 9.61E?01

Mean 2.57E-01 3.65E?00 1.53E?01 5.81E?01 9.02E?01

Best 2.89E?01 7.90E?01 1.79E?02 4.73E?02 9.68E?02

Median F3 3.07E?01 8.12E?01 1.80E?02 4.76E?02 9.70E?02

Worst 3.20E?01 8.55E?01 1.82E?02 4.78E?02 9.72E?02

Mean 3.06E?01 8.14E?01 1.80E?02 4.76E?02 9.70E?02

Best 0.00E?00 2.13E-14 1.14E-13 8.30E-13 9.22E-03

Median F4 0.00E?00 8.17E-14 4.26E-13 3.83E-12 1.08E?00

Worst 6.29E-13 2.22E-13 1.01E-12 1.92E-02 2.06E?00

Mean 1.05E-13 8.32E-14 4.17E-13 1.62E-03 1.03E?00

Best 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Median F5 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Worst 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Mean 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Best 1.12E-14 2.55E-14 5.03E-14 1.36E-13 2.85E-13

Median F6 1.12E-14 2.55E-14 5.39E-14 1.43E-13 2.88E-13

Worst 1.48E-14 2.90E-14 5.74E-14 1.50E-13 2.92E-13

Mean 1.24E-14 2.60E-14 5.45E-14 1.43E-13 2.88E-13

Best 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Median F7 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Worst 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Mean 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Best 9.03E-02 5.67E?01 1.87E?03 3.67E?04 1.78E?05

Median F8 1.46E-01 7.57E?01 2.09E?03 4.00E?04 1.89E?05

Worst 3.51E-01 1.04E?02 2.36E?03 4.33E?04 1.91E?05

Mean 1.67E-01 7.53E?01 2.10E?03 3.93E?04 1.86E?05

Best 6.04E-06 1.04E-05 2.73E-05 7.00E-05 1.54E-04

Median F9 7.06E-06 1.49E-05 3.31E-05 8.03E-05 1.71E-04

Worst 1.24E-05 1.92E-05 3.84E-05 8.33E-05 1.81E-04

Mean 7.77E-06 1.46E-05 3.23E-05 7.84E-05 1.70E-04

Best 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Median F10 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Worst 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Mean 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Best 5.65E-06 1.21E-05 2.85E-05 7.66E-05 1.67E-04

Median F11 6.52E-06 1.64E-05 3.17E-05 8.25E-05 1.72E-04

Worst 7.44E-06 1.89E-05 3.35E-05 9.28E-05 1.84E-04

Mean 6.44E-06 1.58E-05 3.12E-05 8.25E-05 1.73E-04

Best 1.14E-13 5.34E-12 8.65E-11 6.17E-10 1.70E-09

Median F12 1.39E-13 8.17E-12 1.16E-10 8.04E-10 1.93E-09

Worst 1.52E-13 9.31E-12 1.54E-10 8.71E-10 2.05E-09

Mean 1.33E-13 7.57E-12 1.20E-10 7.39E-10 1.87E-09

Best 2.44E?01 6.20E?01 1.37E?02 3.58E?02 7.30E?02

Median F13 2.61E?01 6.29E?01 1.37E?02 3.59E?02 7.31E?02

Worst 2.67E?01 6.49E?01 1.39E?02 3.61E?02 7.32E?02

Mean 2.55E?01 6.32E?01 1.38E?02 3.59E?02 7.31E?02

Table 1 continued

D = 50 D = 100 D = 200 D = 500 D = 1,000

Best 3.48E-09 2.93E-08 5.72E-08 1.45E-07 2.63E-07

Median F14 6.50E-09 3.88E-08 6.78E-08 2.06E-07 9.95E-01

Worst 1.04E-08 6.05E-08 9.95E-01 9.95E-01 1.73E?00

Mean 6.24E-09 4.13E-08 8.17E-02 7.67E-02 6.06E-01

Best 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Median F15 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Worst 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Mean 0.00E?00 0.00E?00 0.00E?00 0.00E?00 INF

Best 1.24E-10 2.62E-10 7.61E-10 1.95E-09 4.32E-09

Median F16 1.51E-10 3.95E-10 1.00E-09 2.20E-09 4.64E-09

Worst 2.38E-10 4.94E-10 1.12E-09 2.60E-09 4.88E-09

Mean 1.57E-10 3.75E-10 9.54E-10 2.24E-09 4.59E-09

Best 6.07E-01 2.45E-02 3.59E?01 1.11E?02 2.346E?02

Median F17 1.02E?00 1.29E?01 3.79E?01 1.12E?02 2.358E?02

Worst 2.05E?00 1.45E?01 3.86E?01 1.13E?02 2.363E?02

Mean 1.17E?00 1.11E?01 3.74E?01 1.12E?02 2.357E?02

Best 2.09E-07 9.30E-07 1.72E-06 4.86E-06 9.72E-06

Median F18 3.05E-07 1.08E-06 2.01E-06 5.14E-06 1.14E-05

Worst 3.78E-07 1.36E-06 2.14E-06 5.19E-06 6.73E-05

Mean 2.97E-07 1.11E-06 1.91E-06 5.06E-06 3.29E-05

Best 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Median F19 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Worst 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Mean 0.00E?00 0.00E?00 0.00E?00 0.00E?00 0.00E?00
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Table 2 Mean error values achieved by DE, CHC, G-CMA-ES and

GODE on D = 50

F Mean

GODE DE CHC G-CMA-ES

F1 0.00E100 0.00E100 1.67E-11 0.00E100

F2 2.57E-01 3.60E-01 6.19E?01 2.75E211

F3 3.06E?01 2.89E?01 1.25E?06 7.97E201

F4 1.05E213 3.98E-02 7.43E?01 1.05E?02

F5 0.00E100 0.00E100 1.67E-03 2.96E-04

F6 1.24E214 1.43E-13 6.15E-07 2.09E?01

F7 0.00E100 0.00E100 2.66E-09 1.01E-10

F8 1.67E-01 3.44E?00 2.24E?02 0.00E100

F9 7.77E206 2.73E?02 3.10E?02 1.66E?01

F10 0.00E100 0.00E100 7.30E?00 6.81E?00

F11 6.44E206 6.23E-05 2.16E?00 3.01E?01

F12 1.33E213 5.35E-13 9.57E-01 1.88E?02

F13 2.55E?01 2.45E101 2.08E?06 1.97E?02

F14 6.24E209 4.16E-08 6.17E?01 1.09E?02

F15 0.00E100 0.00E100 3.98E-01 9.79E-04

F16 1.57E210 1.56E-09 2.95E-09 4.27E?02

F17 1.17E?00 7.98E201 2.26E?04 6.89E?02

F18 2.97E207 1.22E-04 1.58E?01 1.31E?02

F19 0.00E100 0.00E100 3.59E?02 4.76E?00

The bold value indicates the best mean error value among the four

algorithms

Table 3 Mean error values achieved by DE, CHC, G-CMA-ES and

GODE on D = 100

F Mean

GODE DE CHC G-CMA-ES

F1 0.00E100 0.00E100 3.56E-11 0.00E?00

F2 3.65E?00 4.45E?00 8.58E?01 1.51E210

F3 8.14E?01 8.01E?01 4.19E?06 3.88E100

F4 8.32E214 7.96E-02 2.19E?02 2.50E?02

F5 0.00E100 0.00E100 3.83E-03 1.58E-03

F6 2.60E214 3.10E-13 4.10E-07 2.12E?01

F7 0.00E100 0.00E100 1.40E-02 4.22E-04

F8 7.53E?01 3.69E?02 1.69E?03 0.00E100

F9 1.46E205 5.06E?02 5.86E?02 1.02E?02

F10 0.00E100 0.00E100 3.30E?01 1.66E?01

F11 1.58E205 1.28E-04 7.32E?01 1.64E?02

F12 7.57E212 5.99E-11 1.03E?01 4.17E?02

F13 6.32E?01 6.17E101 2.70E?06 4.21E?02

F14 4.13E208 4.79E-02 1.66E?02 2.55E?02

F15 0.00E100 0.00E100 8.13E?00 6.30E-01

F16 3.75E210 3.58E-09 2.23E?01 8.59E?02

F17 1.11E101 1.23E?01 1.47E?05 1.51E?03

F18 1.11E206 2.98E-04 7.00E?01 3.07E?02

F19 0.00E100 0.00E100 5.45E?02 2.02E?01

The bold value indicates the best mean error value among the four

algorithms

Table 4 Mean error values achieved by DE, CHC, G-CMA-ES and

GODE on D = 200

F Mean

GODE DE CHC G-CMA-ES

F1 0.00E100 0.00E100 8.34E-01 0.00E?00

F2 1.53E?01 1.92E?01 1.03E?02 1.16E209

F3 1.80E?02 1.78E?02 2.01E?07 8.91E101

F4 4.17E213 1.27E-01 5.40E?02 6.48E?02

F5 0.00E100 0.00E100 8.76E-03 0.00E100

F6 5.45E214 6.54E-13 1.23E?00 2.14E?01

F7 0.00E100 0.00E100 2.59E-01 1.17E-01

F8 2.10E?03 5.53E?03 9.38E?03 0.00E100

F9 3.23E205 1.01E?03 1.19E?03 3.75E?02

F10 0.00E100 0.00E100 7.13E?01 4.43E?01

F11 3.12E205 2.62E-04 3.85E?02 8.03E?02

F12 1.20E210 9.76E-10 7.44E?01 9.06E?02

F13 1.38E?02 1.36E102 5.75E?06 9.43E?02

F14 8.17E202 1.38E-01 4.29E?02 6.09E?02

F15 0.00E100 0.00E100 2.14E?01 1.75E?00

F16 9.54E210 7.46E-09 1.60E?02 1.92E?03

F17 3.74E?01 3.70E101 1.75E?05 3.36E?03

F18 1.91E206 4.73E-04 2.12E?02 6.89E?02

F19 0.00E100 0.00E100 2.06E?03 7.52E?02

The bold value indicates the best mean error value among the four

algorithms

Table 5 Mean error values achieved by DE, CHC, G-CMA-ES and

GODE on D = 500

F Mean

GODE DE CHC G-CMA-ES

F1 0.00E100 0.00E100 2.84E-12 0.00E?00

F2 5.81E?01 5.35E?01 1.29E?02 3.48E204

F3 4.76E?02 4.76E?02 1.14E?06 3.58E102

F4 1.62E203 3.20E-01 1.91E?03 2.10E?03

F5 0.00E100 0.00E100 6.98E-03 2.96E-04

F6 1.43E213 1.65E-12 5.16E?00 2.15E?01

F7 0.00E100 0.00E100 1.27E-01 7.21E?153

F8 3.93E?04 6.09E?04 7.22E?04 2.36E206

F9 7.84E205 2.52E?03 3.00E?03 1.74E?03

F10 0.00E100 0.00E100 1.86E?02 1.27E?02

F11 8.25E205 6.76E-04 1.81E?03 4.16E?03

F12 7.39E210 7.07E-09 4.48E?02 2.58E?03

F13 3.59E102 3.59E102 3.22E?07 2.87E?03

F14 7.67E202 1.35E-01 1.46E?03 1.95E?03

F15 0.00E100 0.00E100 6.01E?01 2.82E?262

F16 2.24E209 2.04E-08 9.55E?02 5.45E?03

F17 1.12E?02 1.11E102 8.40E?05 9.59E?03

F18 5.06E206 1.22E-03 7.32E?02 2.05E?03

F19 0.00E100 0.00E100 1.76E?03 2.44E?06

The bold value indicates the best mean error value among the four

algorithms
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F2, F3 and F17, DE outperforms GODE on some dimen-

sions. Both GODE and DE achieve the same results on six

functions: F1, F5, F7, F10, F15 (except for D ¼ 1; 000) and

F19 (except for D ¼ 1; 000). These comparison results

clearly demonstrate that the achieved improvements of

GODE are due to usage of the proposed GOBL strategy.

G-CMA-ES outperforms GODE on three functions, F2,

F3 and F8. Especially for F8, only G-CMA-ES achieves

excellent results, while the other three algorithms could

hardly search reasonable results. Both GODE and C-CMA-

ES obtain the same results for F1 and F5 on D ¼ 200. For

the rest of the 14 functions, GODE obtains better perfor-

mance than G-CMA-ES.

Real-coded CHC is the worst algorithms among the four

algorithms. It only obtains promising results on F1, which

is a simple and unimodal function. For the rest of the

functions, the performance of CHC is seriously affected

with increasing dimensions. It suggests that CHC is not a

good choice for solving large-scale problems.

6.4 Statistical comparisons of different algorithms

Non-parametric tests can be used for comparing algo-

rithms, the results of which represent average values for

each problem, in spite of the inexistence of relationships

among them. It is encouraged to use non-parametric tests to

analyze the results obtained by evolutionary algorithms for

continuous optimization problems in multiple problem

analysis (Garcı́a et al. 2009a, b; Luengo et al. 2009).

To compare the performance of multiple algorithms on

the test suite, average ranking of Friedman test is con-

ducted according to the suggestions of Garcı́a et al. (2010).

Tables 7, 8, 9, 10 and 11 show the average ranking of

GODE, DE, CHC and G-CMA-ES on D = 50, 100, 200,

500 and 1,000, respectively. For each dimension, the per-

formance of the four algorithms (three for D = 1,000) can

be sorted by average ranking into the following order:

GODE, DE, G-CMA-ES and CHC. It means that GODE

Table 6 Mean error values achieved by DE, CHC, G-CMA-ES and

GODE on D = 1000

F Mean

GODE DE CHC

F1 0.00E100 0.00E100 1.36E-11

F2 9.02E?01 8.46E101 1.44E?02

F3 9.70E?02 9.69E102 8.75E?03

F4 1.03E100 1.44E?00 4.76E?03

F5 0.00E100 0.00E100 7.02E-03

F6 2.88E213 3.29E-12 1.38E?01

F7 INF 0.00E100 3.52E-01

F8 1.86E105 2.46E?05 3.11E?05

F9 1.70E204 5.13E?03 6.11E?03

F10 0.00E100 0.00E100 3.83E?02

F11 1.73E204 1.35E-03 4.82E?03

F12 1.87E209 1.68E-08 1.05E?03

F13 7.31E?02 7.30E102 6.66E?07

F14 6.06E201 6.90E-01 3.62E?03

F15 INF 0.00E100 8.37E?01

F16 4.59E209 4.18E-08 2.32E?03

F17 2.357E102 2.358E?02 2.044E?07

F18 3.29E205 2.37E-03 1.72E?03

F19 0.00E100 0.00E100 4.20E?03

The bold value indicates the best mean error value among the three

algorithms

Table 7 Average rankings of the algorithms when D = 50

Algorithm Ranking

GODE 3.499999999999999

DE 3.078947368421052

G-CMA-ES 2.052631578947368

CHC 1.368421052631579

Table 8 Average rankings of the algorithms when D = 100

Algorithm Ranking

GODE 3.5526315789473673

DE 3.026315789473684

G-CMA-ES 2.052631578947368

CHC 1.368421052631579

Table 9 Average rankings of the algorithms when D = 200

Algorithm Ranking

GODE 3.473684210526315

DE 3.052631578947368

G-CMA-ES 2.1052631578947367

CHC 1.368421052631579

Table 10 Average rankings of the algorithms when D = 500

Algorithm Ranking

GODE 3.473684210526315

DE 3.1052631578947363

G-CMA-ES 1.8947368421052628

CHC 1.5263157894736836

Table 11 Average rankings of the algorithms when D = 1000

Algorithm Ranking

GODE 2.7058823529411757

DE 2.2941176470588234

CHC 1.0
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and CHC are the best and worst ones among the four

algorithms, respectively.

To investigate the significant differences between the

behavior of two algorithms, we conduct other tests:

Nemenyi’s, Holm’s, Shaffer’s and Bergmann-Hommel’s.

For each test, we calculate the adjusted p values on pair-

wise comparisons of all algorithms.

Tables 12,13,14,15 and 16 show the results of adjusted

p values on and D = 50, 100, 200, 500 and 1,000,

respectively. The computation of the results is used by the

software MULTIPLETEST package (provided on the Web

site: http://sci2s.ugr.es/sicidm). Under the null hypothesis,

the two algorithms are equivalent. If the null hypothesis is

rejected, then the performances of these two algorithms are

significantly different. In this paper, we only discuss whe-

ther the hypotheses is rejected at the 0.05 level of signifi-

cance. For D = 50, Nemenyi’s procedure rejects hypotheses

1–3, while Holm’s, Shaffer’s and Bergmann-Hommel’s

procedures reject hypotheses 1–4. For D = 100, Nemenyi’s,

Holm’s and Shaffer’s procedures reject hypotheses 1–3,

while Bergmann-Hommel’s procedure rejects hypotheses

1–4. For D = 200, Nemenyi’s, Holm’s and Shaffer’s pro-

cedures reject hypotheses 1–3, while Bergmann-Hommel’s

procedures rejects hypotheses 1–4. For D = 500 and 1,000,

all the four tests reject hypotheses 1–4 and 1–3, respectively.

Besides the above four tests, we also conduct Wilco-

xon’s test to detect significant differences between the

behavior of two algorithms. Table 17 shows the p values of

applying Wilcoxon’s test between GODE and other three

algorithms for D = 50, 100, 200, 500 and 1,000. The

p values below 0.05 are shown in bold. From the results, it

can be seen that GODE is significantly better than CHC and

G-CMA-ES on each dimension. Though GODE is not

statistically better than DE on each dimension, GODE

outperforms DE according to the results of average ranking.

6.5 Computational running time

In this section, we investigate the computation running

time and the computational time complexity of the pro-

posed algorithm. For each test function, the average run-

ning time on the 25 runs are recorded. The computational

conditions are listed as follows.

– System: Windows 7 professional edition

– CPU: Intel(R) Core(TM)2 Duo CPU E8500 (3.16GHz)

– RAM: 4G

– Language: C??

– Compiler: Microsoft Visual C?? 6.0

– MAX_FEs: 5000*D (D=50, 100, 200, 500 and 1,000)

The average computation running time of GODE on the

test suite is given in Table 18. As seen, the computation

time increases dramatically with increasing of dimensions. T
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To investigate how the computational running time grows

in relation to the number of dimensions, we analyze the

computational time complexity of GODE as follows.

Assume that O(F(D)) is the computational time com-

plexity of a fitness evaluation function F(D) on dimension

D. For GODE, the computational time complexity is

OðD2Þ þ OðDÞ � OðFðDÞÞ. So, the computational time

complexity of GODE depends on O(F(D)). For the 19 test

functions used in the experiments, O(F(D)) is O(D) except

for F8; on this function, OðFðDÞÞ ¼ OðD2Þ. So the com-

putational time complexity of GODE is OðD3Þ for F8 and

OðD2Þ for the rest of functions.

To verify the above analysis, we use two regression

models, cubic (T ¼ a0 þ a1�Dþ a2�D2 þ a3�D3, where

a0; a1; a2; a3 [ 0) and quadratic (T ¼ b0 þ b1 � Dþ b2�
D2, where b0; b1; b2 [ 0), to approximate the results of

computational running time for F8 and the rest of functions,

respectively. To measure how well the regression line

approximates the real data points, we calculate the values of

‘‘R square’’, which evaluates the goodness of fit of the line. It

represents the percentage variation of the data explained by

the fitted line. A value of 1.000 indicates that the regression

line perfectly (100%) fits the real data. Table 19 shows the

values of ‘‘R square’’. As seen, the regression model per-

fectly fits the real data for each test function. It confirms that

the computational time complexity of GODE is OðD3Þ for

F8 and OðD2Þ for the rest of the functions. The results

suggest that GODE is applicable for large-scale problems.

7 Conclusion

In this paper, a novel DE algorithm based on generalized

opposition-based learning (GODE) is proposed. The GOBL

is an enhanced opposition-based learning, which trans-

forms candidates in current search space to a new search

space. By simultaneously evaluating solutions in the cur-

rent search space and transformed space, we can provide

more chance of finding better solutions. A scalability test

over 19 high-dimensional continuous optimization prob-

lems with and D = 50, 100, 200, 500 and 1,000, provided

by the current special issue, are conducted.

GODE as well as DE obtains promising performance on

the test suite (except for F8), while CHC and G-CMA-ES

Table 17 Wilcoxon test considering functions F1–F19 on each

dimension

GODE

vs.

p values

D = 50 D = 100 D = 200 D = 500 D = 1000

DE 2.79E-01 8.69E-02 1.96E-01 3.47E-01 2.79E-01

CHC 1.32E204 1.32E204 1.32E204 1.32E204 2.93E-04

G-CMA-

ES

3.78E203 4.97E203 1.48E202 8.42E203 N/A

The bold value means the p value is below 0.05

Table 18 The average computation running time (in seconds)

achieved by GODE

F D = 50 D = 100 D = 200 D = 500 D = 1000

F1 0.531 1.42 4.071 18.876 68.577

F2 0.78 2.355 7.691 41.73 159.323

F3 4.009 15.351 60.294 376.351 1479.83

F4 2.277 8.346 31.543 190.632 754.059

F5 2.356 8.627 33.166 200.679 794.26

F6 2.199 7.862 29.765 177.902 702.531

F7 0.827 2.527 8.44 42.245 –

F8 0.561 1.42 4.025 18.813 66.722

F9 3.292 12.417 48.407 293.796 1167.83

F10 1.56 5.601 20.826 123.521 487.236

F11 3.385 12.87 50.045 306.696 1220.03

F12 1.326 4.571 16.536 95.597 373.215

F13 3.932 14.96 58.796 364.885 1435.55

F14 2.574 9.5 36.442 218.525 864.726

F15 1.186 3.994 13.681 78.827 –

F16 2.121 7.379 27.8 165.609 651.894

F17 3.729 13.681 53.18 327.351 1296.32

F18 3.213 11.903 45.864 278.04 1102.28

F19 1.622 5.897 20.452 128.872 470.903

Table 19 Computational time complexity analysis using regression

model

F Regression model R square

F1 Quadratic 1.000

F2 Quadratic 1.000

F3 Quadratic 1.000

F4 Quadratic 1.000

F5 Quadratic 1.000

F6 Quadratic 1.000

F7 – –

F8 Cubic 1.000

F9 Quadratic 1.000

F10 Quadratic 1.000

F11 Quadratic 1.000

F12 Quadratic 1.000

F13 Quadratic 1.000

F14 Quadratic 1.000

F15 – –

F16 Quadratic 1.000

F17 Quadratic 1.000

F18 Quadratic 1.000

F19 Quadratic 1.000
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could hardly obtain reasonable results on many functions.

Compared to DE, GODE performs better on the majority of

test functions. It demonstrates that the proposed GOBL is

helpful to solve these kinds of challenging problems.

Statistical comparisons of GODE with DE, CHC and

G-CMA-ES show that GODE and CHC are the best and worst

ones among the four algorithms. GODE is significantly

better than CHC and G-CMA-ES on each dimension.

Though GODE is not significantly better than DE, GODE

performs better than DE according to the results of average

ranking.

However, GODE is not suitable for all kinds of prob-

lems, such as F3 and its hybrid composition functions F13

and F17. GODE also has some difficulties when solving

F8, while G-CMA-ES could find the global optimum on

this function.

The proposed GOBL can be embedded and investigated

on other population-based algorithms. More applications

on GOBL will be studied. Moreover, possible directions for

our future work also include the investigation of diversity

analysis, the weaknesses and limitations of GOBL, the

convergence analysis, etc.
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distribution. In: Proceedings of IEEE congress on evolutionary

computation, pp 3918–3925

Wang H, Liu Y, Zeng SY, Li H, Li CH (2007) Opposition-based

particle swarm algorithm with Cauchy mutation. In: Proceedings

of IEEE congress on evolutionary computation, pp 4750–4756

Wang H, Wu ZJ, Liu Y, Wang J, Jiang DZ, Chen LL (2009a) Space

transformation search: a new evolutionary technique. In:

Proceedings of world summit on genetic and evolutionary

computation, pp 537–544

Wang H, Wu ZJ, Rahnamayan S, Kang LS (2009b) A scalability test

for accelerated DE using generalized opposition-based learning.

In: Proceedings of international conference on intelligent system

design and applications, pp 1090–1095

Yang Z, Tang K, Yao X (2008) Multilevel cooperative coevolution

for large scale optimization. In: Proceedings of IEEE congress

on evolutionary computation, pp 1663–1670

Zhao S, Liang J, Suganthan PN, Tasgetiren MF (2008) Dynamic

multi-swarm particle swarm optimizer with local search for large

scale global optimization. In: Proceedings of IEEE congress on

evolutionary computation, pp 3846–3853

2140 H. Wang et al.

123


	Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
	Abstract
	Introduction
	Differential evolution
	Related works
	Generalized opposition-based learning
	Opposition-based learning
	The concept of GOBL
	Four different schemes of GOBL
	GOBL-based optimization

	Generalized opposition-based differential evolution
	Experimental studies
	Experimental setup
	Results
	Comparison of GODE with DE, CHC and G-CMA-ES
	Statistical comparisons of different algorithms
	Computational running time

	Conclusion
	Acknowledgments
	References


